Add VLAN interfaces to Virtual NGFW Engine interfaces
VLANs divide a single physical network link into several virtual links.
VLAN interfaces can only be added for Virtual NGFW Engines if the creation of VLAN interfaces is enabled in the Master NGFW Engine Properties. The maximum number of VLANs for a single physical interface is 4094. The VLANs must also be defined in the configuration of the external switch or router to which the interface is connected.
For more details about the product and how to configure features, click Help or press F1.
Steps
VLAN Interface Properties dialog box (Firewall)
Use this dialog box to define the VLAN Interface properties for a Single Firewall, Firewall Cluster, Virtual Firewall, or Master NGFW Engine in the Firewall role.
Option | Definition |
---|---|
General tab | |
VLAN ID | Enter the VLAN ID (1–4094). The VLAN IDs you add must be the same as the VLAN IDs that are used in the switch at the other end of the VLAN trunk. Each VLAN Interface is identified as Interface-ID.VLAN-ID, for example, 2.100 for Interface ID 2 and VLAN ID 100. |
Option | Definition |
---|---|
Virtual Resource section (Master NGFW Engines only) |
|
Virtual Resource | The Virtual Resource associated with the interface. Select the same Virtual Resource in the properties of the Virtual NGFW Engine to add the Virtual NGFW Engine to the Master NGFW Engine. |
Virtual Engine Interface ID | Specifies the Interface ID of the Physical Interface in the Virtual NGFW Engine that is associated with this interface. |
Interface Throughput Limit | Enter the throughput for the link on this interface as megabits per second. If the Virtual Resource element has a limit defined, the limit defined in that element is always used. |
Virtual Resources table | (When the VLAN interface is under a shared physical interface) Select the Virtual Resources that you want to use for the associated Virtual Firewalls. Click Add to add an element to the table, or Remove to remove the selected element. |
Virtual Resource | The selected Virtual Resource element. |
Interface ID | Specifies the Interface ID of the Physical Interface in the Virtual NGFW Engine that is associated with this interface. |
Throughput Limit | Enter the throughput for the link on this interface as megabits per second. If the Virtual Resource element has a limit defined, the limit defined in that element is always used. |
Option | Definition |
---|---|
Interface Settings for Master NGFW Engine section (Master NGFW Engines only) The options in this section apply only to the Master NGFW Engines system communications. |
Option | Definition |
---|---|
QoS Mode
(Optional) |
Defines how QoS is applied to the link on this interface. If Full QoS or DSCP Handling and Throttling is selected, a QoS policy must also be selected. If Full QoS is selected, the throughput must also be defined. If the interface is a Physical Interface, the same QoS mode is automatically applied to any VLANs created under it. |
QoS Policy |
(When QoS Mode is Full QoS or DSCP Handling and Throttling) The QoS policy for the link on this interface. If the interface is a Physical Interface, the same QoS policy is automatically selected for any VLANs created under it. Note: If a Virtual Resource has a throughput limit defined, the interfaces on the Virtual NGFW Engine that use a QoS
policy all use the same policy. The policy used in the first interface is used for all the interfaces.
|
Interface Throughput Limit |
(When QoS Mode is Full QoS) Enter the throughput for the link on this interface as megabits per second. If the interface is a Physical Interface, the same throughput is automatically applied to any VLANs created under it. The throughput is for uplink speed (outgoing traffic) and typically must correspond to the speed of an Internet link (such as an ADSL line), or the combined speeds of several such links when connected to a single interface. CAUTION: Make sure that you set the interface speed correctly. When the bandwidth is set, the NGFW Engine
always scales the total amount of traffic on this interface to the bandwidth you defined. This scaling happens even if there are no bandwidth limits or guarantees defined for any
traffic.
CAUTION: The throughput for a Physical Interface for a Virtual NGFW Engine must not be higher than the
throughput for the Master NGFW Engine interface that hosts the Virtual NGFW Engine. Contact
the administrator of the Master NGFW Engine before changing this setting.
|
Option | Definition |
---|---|
Zone
(Optional) |
Select the network zone to which the interface belongs. Click Select to select an element, or click New to create an element. |
MTU
(Optional) |
The maximum transmission unit (MTU) size on the connected link. Either enter a value between 400–65535 or select a common MTU value from the list. If the interface is a Physical Interface, the same MTU is automatically applied to any VLANs created under it. The default value (also the maximum standard MTU in Ethernet) is 1500. Do not set a value larger than the standard MTU, unless you know that all devices along the communication path support it. To set the MTU for a Virtual NGFW Engine, you must configure the MTU for the interface on the Master NGFW Engine that hosts the Virtual NGFW Engine, then refresh the policy on the Master NGFW Engine and the Virtual NGFW Engine. |
Comment (Optional) |
A comment for your own reference. |
Option | Definition |
---|---|
DHCPv4 or DHCPv6 tab | |
DHCP Mode | Select the DHCP mode:
|
Option | Definition |
---|---|
DHCPv4 or DHCPv6 tab, DHCPv4 Relay or DHCPv6 Relay settings
(When DHCP Mode is DHCPv4 Relay or DHCPv6 Relay) |
|
Resources section. Add elements from this list to the list in the Content section. Click Add to add an element to the list, or Remove to remove the selected element. You can also drag and drop elements. | |
Filter | Allows you to filter the elements shown. |
Up | Navigates up one level in the navigation hierarchy. Not available at the top level of the navigation hierarchy. |
A menu that contains various options, such as for creating new elements or showing elements that have been moved to the Trash. | |
Max Packet Size | Set the maximum allowed packet size. |
DHCP Relay | Select the CVI or IP address you want to use for DHCP relay. |
Trusted Circuit | When selected, DHCP relay agents that terminate switched or permanent circuits and can identify the remote host end of the circuit are allowed to add the Remote-ID option to the DHCP messages before relaying them. |
Option | Definition |
---|---|
DHCPv4 tab, DHCPv4 Server settings (When DHCP Mode is DHCPv4 Server) |
|
DHCP Address range | Defines the DHCP address range that the Firewall assigns to clients in one of the following ways:
Note: The DHCP address range must be in the same network space defined for the Physical
Interface. The DHCP address range must not contain the Firewall's NDI or CVI addresses or broadcast IP addresses of networks behind the Firewall.
|
Primary DNS Server | Enter the primary DNS server IP address that clients use to resolve domain names. If there is a listening IP address for DNS Relay on the same interface, clients use the DNS services provided by the firewall by default. If you want clients to use a different external DNS server, enter the IP address of the external DNS server. |
Secondary DNS Server | Enter the secondary DNS server IP address that clients use to resolve domain names. |
Primary WINS Server | Enter the primary WINS server IP address that clients use to resolve NetBIOS computer names. |
Secondary WINS Server | Enter the secondary WINS server IP address that clients use to resolve NetBIOS computer names. |
Default Gateway | Enter the IP address through which traffic from clients is routed. |
Default Lease Time | Enter the time after which IP addresses assigned to clients must be renewed. |
Domain Name Search List
(Optional) |
Enter a comma-separated Domain Name Search List to configure DNS search suffixes. |
Override DHCP Ranges per Node
(Firewall Clusters only) |
Enter the DHCP address range for each node. CAUTION: Enter unique ranges for each node. Overlapping ranges can cause IP address duplication.
|
Option | Definition |
---|---|
Advanced tab (All optional settings) |
|
Override Engine's Default Settings | When selected, the default settings of the NGFW Engine are overridden. |
SYN Rate Limits |
|
Allowed SYNs per Second | Defines the number of allowed SYN packets per second. |
Burst Size | The number of allowed SYNs before the NGFW Engine starts limiting the SYN rate. We recommend that you set the burst size to be at least one tenth of the Allowed SYNs per Second value. If the burst size is too small, SYN rate limits do not work. For example, if the value for Allowed SYNs per Second is 10000, set the value for Burst Size to at least 1000. |
Enable Log Compression | By default, each generated Antispoofing and Discard log entry is logged separately and displayed as a separate entry in the Logs view. Log Compression settings allow you to define the maximum number of separately logged entries. When the defined limit is reached, a single antispoofing log entry or Discard log entry is logged. The single entry contains information about the total number of the generated Antispoofing log entries or Discard log entries. After this log entry, the logging returns to normal and all generated entries are once more logged and displayed separately. Log Compression is useful when the routing configuration generates a large volume of antispoofing logs or the number of Discard logs becomes high. For each event type, Antispoofing or Discard, you can define:
|
Set to Default | Returns all changes to the log compression settings to the default settings. |
Send IPv6 Router Advertisements | Select and specify what configuration information is offered in the Router Advertisement messages to devices that connect to the same network as the firewall. |
Managed address configuration | When selected, the router advertisement messages that the Firewall sends instruct the hosts to use the DHCPv6 protocol to acquire IP addresses and other configuration information. |
Other configuration | When selected, the router advertisement messages that the Firewall sends instruct the hosts to acquire the IPv6 prefix and the default route information from the router advertisement messages, and to use the DHCPv6 protocol to acquire other configuration information (such as DNS server addresses). |
VLAN Interface Properties dialog box (IPS engine)
Use this dialog box to define the VLAN Interface properties for a Single IPS engine, IPS Cluster, Virtual IPS engine, or Master NGFW Engine in the IPS role.
Option | Definition |
---|---|
General tab | |
VLAN ID | Enter the VLAN ID (1–4094). The VLAN IDs you add must be the same as the VLAN IDs that are used in the switch at the other end of the VLAN trunk. Each VLAN Interface is identified as Interface-ID.VLAN-ID, for example, 2.100 for Interface ID 2 and VLAN ID 100. |
Second VLAN ID | (When Type is Inline Interface) Enter the VLAN ID (1–4094) for the Second Interface in the Inline Interface pair. The VLAN IDs you add must be the same as the VLAN IDs that are used in the switch at the other end of the VLAN trunk. Each VLAN Interface is identified as Interface-ID.VLAN-ID, for example, 2.100 for Interface ID 2 and VLAN ID 100.Note: The VLAN identifier must be identical in both Inline
Interfaces. For example, 3.101 and 4.101 would be a valid pair of VLAN Inline Interfaces.
|
Zone
(Optional) |
Select the network zone to which the interface belongs. Click Select to select an element, or click New to create an element. |
MTU
(Optional) |
The maximum transmission unit (MTU) size on the connected link. Either enter a value between 400–65535 or select a common MTU value from the list. If the interface is a Physical Interface, the same MTU is automatically applied to any VLANs created under it. The default value (also the maximum standard MTU in Ethernet) is 1500. Do not set a value larger than the standard MTU, unless you know that all devices along the communication path support it. To set the MTU for a Virtual NGFW Engine, you must configure the MTU for the interface on the Master NGFW Engine that hosts the Virtual NGFW Engine, then refresh the policy on the Master NGFW Engine and the Virtual NGFW Engine. |
Comment (Optional) |
A comment for your own reference. |
Reset Interface | (When Type is Capture Interface) Select the Reset Interface to specify the interface through which TCP connection resets are sent when Reset responses are used in your policy. |
Logical Interface | Specifies the Logical Interface. You cannot use the same Logical Interface element for both Inline and Capture Interfaces on the same Virtual NGFW Engine. |
Second Interface (Optional) |
(When Type is Inline Interface)
|
Option | Definition |
---|---|
Virtual Resource section (Master NGFW Engines only) |
|
Virtual Resource | The Virtual Resource associated with the interface. Select the same Virtual Resource in the properties of the Virtual NGFW Engine to add the Virtual NGFW Engine to the Master NGFW Engine. |
Option | Definition |
---|---|
QoS Mode
(Optional) |
Defines how QoS is applied to the link on this interface. If Full QoS or DSCP Handling and Throttling is selected, a QoS policy must also be selected. If Full QoS is selected, the throughput must also be defined. If the interface is a Physical Interface, the same QoS mode is automatically applied to any VLANs created under it. |
QoS Policy |
(When QoS Mode is Full QoS or DSCP Handling and Throttling) The QoS policy for the link on this interface. If the interface is a Physical Interface, the same QoS policy is automatically selected for any VLANs created under it. Note: If a Virtual Resource has a throughput limit defined, the interfaces on the Virtual NGFW Engine that use a QoS
policy all use the same policy. The policy used in the first interface is used for all the interfaces.
|
Interface Throughput Limit |
(When QoS Mode is Full QoS) Enter the throughput for the link on this interface as megabits per second. If the interface is a Physical Interface, the same throughput is automatically applied to any VLANs created under it. The throughput is for uplink speed (outgoing traffic) and typically must correspond to the speed of an Internet link (such as an ADSL line), or the combined speeds of several such links when connected to a single interface. CAUTION: Make sure that you set the interface speed correctly. When the bandwidth is set, the NGFW Engine
always scales the total amount of traffic on this interface to the bandwidth you defined. This scaling happens even if there are no bandwidth limits or guarantees defined for any
traffic.
CAUTION: The throughput for a Physical Interface for a Virtual NGFW Engine must not be higher than the
throughput for the Master NGFW Engine interface that hosts the Virtual NGFW Engine. Contact
the administrator of the Master NGFW Engine before changing this setting.
|
Option | Definition |
---|---|
Advanced tab (All optional settings) |
|
Override Engine's Default Settings | When selected, the default settings of the NGFW Engine are overridden. |
SYN Rate Limits |
|
Allowed SYNs per Second | Defines the number of allowed SYN packets per second. |
Burst Size | The number of allowed SYNs before the NGFW Engine starts limiting the SYN rate. We recommend that you set the burst size to be at least one tenth of the Allowed SYNs per Second value. If the burst size is too small, SYN rate limits do not work. For example, if the value for Allowed SYNs per Second is 10000, set the value for Burst Size to at least 1000. |
Enable Log Compression | By default, each generated Antispoofing and Discard log entry is logged separately and displayed as a separate entry in the Logs view. Log Compression settings allow you to define the maximum number of separately logged entries. When the defined limit is reached, a single antispoofing log entry or Discard log entry is logged. The single entry contains information about the total number of the generated Antispoofing log entries or Discard log entries. After this log entry, the logging returns to normal and all generated entries are once more logged and displayed separately. Log Compression is useful when the routing configuration generates a large volume of antispoofing logs or the number of Discard logs becomes high. For each event type, Antispoofing or Discard, you can define:
|
Set to Default | Returns all changes to the log compression settings to the default settings. |
VLAN Interface Properties dialog box (Layer 2 Firewall)
Use this dialog box to define the VLAN Interface properties for a Single Layer 2 Firewall, Layer 2 Firewall Cluster, Virtual Layer 2 Firewall, or Master NGFW Engine in the Layer 2 Firewall role.
Option | Definition |
---|---|
General tab | |
VLAN ID | Enter the VLAN ID (1–4094). The VLAN IDs you add must be the same as the VLAN IDs that are used in the switch at the other end of the VLAN trunk. Each VLAN Interface is identified as Interface-ID.VLAN-ID, for example, 2.100 for Interface ID 2 and VLAN ID 100. |
Second VLAN ID | (When Type is Inline Interface) Enter the VLAN ID (1–4094) for the Second Interface in the Inline Interface pair. The VLAN IDs you add must be the same as the VLAN IDs that are used in the switch at the other end of the VLAN trunk. Each VLAN Interface is identified as Interface-ID.VLAN-ID, for example, 2.100 for Interface ID 2 and VLAN ID 100.Note: The VLAN identifier must be identical in both Inline
Interfaces. For example, 3.101 and 4.101 would be a valid pair of VLAN Inline Interfaces.
|
Zone
(Optional) |
Select the network zone to which the interface belongs. Click Select to select an element, or click New to create an element. |
MTU
(Optional) |
The maximum transmission unit (MTU) size on the connected link. Either enter a value between 400–65535 or select a common MTU value from the list. If the interface is a Physical Interface, the same MTU is automatically applied to any VLANs created under it. The default value (also the maximum standard MTU in Ethernet) is 1500. Do not set a value larger than the standard MTU, unless you know that all devices along the communication path support it. To set the MTU for a Virtual NGFW Engine, you must configure the MTU for the interface on the Master NGFW Engine that hosts the Virtual NGFW Engine, then refresh the policy on the Master NGFW Engine and the Virtual NGFW Engine. |
Comment (Optional) |
A comment for your own reference. |
Reset Interface | (When Type is Capture Interface) Select the Reset Interface to specify the interface through which TCP connection resets are sent when Reset responses are used in your policy. |
Logical Interface | Specifies the Logical Interface. You cannot use the same Logical Interface element for both Inline and Capture Interfaces on the same Virtual NGFW Engine. |
Second Interface (Optional) |
(When Type is Inline Interface)
|
Option | Definition |
---|---|
Virtual Resource section (Master NGFW Engines only) |
|
Virtual Resource | The Virtual Resource associated with the interface. Select the same Virtual Resource in the properties of the Virtual Firewall element to add the Virtual NGFW Engine to the Master NGFW Engine. |
Option | Definition |
---|---|
QoS Mode
(Optional) |
Defines how QoS is applied to the link on this interface. If Full QoS or DSCP Handling and Throttling is selected, a QoS policy must also be selected. If Full QoS is selected, the throughput must also be defined. If the interface is a Physical Interface, the same QoS mode is automatically applied to any VLANs created under it. |
QoS Policy |
(When QoS Mode is Full QoS or DSCP Handling and Throttling) The QoS policy for the link on this interface. If the interface is a Physical Interface, the same QoS policy is automatically selected for any VLANs created under it. Note: If a Virtual Resource has a throughput limit defined, the interfaces on the Virtual NGFW Engine that use a QoS
policy all use the same policy. The policy used in the first interface is used for all the interfaces.
|
Interface Throughput Limit |
(When QoS Mode is Full QoS) Enter the throughput for the link on this interface as megabits per second. If the interface is a Physical Interface, the same throughput is automatically applied to any VLANs created under it. The throughput is for uplink speed (outgoing traffic) and typically must correspond to the speed of an Internet link (such as an ADSL line), or the combined speeds of several such links when connected to a single interface. CAUTION: Make sure that you set the interface speed correctly. When the bandwidth is set, the NGFW Engine
always scales the total amount of traffic on this interface to the bandwidth you defined. This scaling happens even if there are no bandwidth limits or guarantees defined for any
traffic.
CAUTION: The throughput for a Physical Interface for a Virtual NGFW Engine must not be higher than the
throughput for the Master NGFW Engine interface that hosts the Virtual NGFW Engine. Contact
the administrator of the Master NGFW Engine before changing this setting.
|
Option | Definition |
---|---|
Advanced tab (All optional settings) |
|
Override Engine's Default Settings | When selected, the default settings of the NGFW Engine are overridden. |
SYN Rate Limits |
|
Allowed SYNs per Second | Defines the number of allowed SYN packets per second. |
Burst Size | The number of allowed SYNs before the NGFW Engine starts limiting the SYN rate. We recommend that you set the burst size to be at least one tenth of the Allowed SYNs per Second value. If the burst size is too small, SYN rate limits do not work. For example, if the value for Allowed SYNs per Second is 10000, set the value for Burst Size to at least 1000. |
Enable Log Compression | By default, each generated Antispoofing and Discard log entry is logged separately and displayed as a separate entry in the Logs view. Log Compression settings allow you to define the maximum number of separately logged entries. When the defined limit is reached, a single antispoofing log entry or Discard log entry is logged. The single entry contains information about the total number of the generated Antispoofing log entries or Discard log entries. After this log entry, the logging returns to normal and all generated entries are once more logged and displayed separately. Log Compression is useful when the routing configuration generates a large volume of antispoofing logs or the number of Discard logs becomes high. For each event type, Antispoofing or Discard, you can define:
|
Set to Default | Returns all changes to the log compression settings to the default settings. |