Add VLAN interfaces for firewalls

VLANs divide a single physical network link into several virtual links. You can define VLANs for both Single Firewalls and Firewall Clusters.

A Virtual Local Area Network (VLAN) is a logical grouping of hosts and network devices that allows creating several separated networks on a single physical link. To allow this separation, the Firewall supports VLAN tagging as defined in the IEEE 802.1q standard.

VLANs also make it easier to deploy geographically distributed Firewall Clusters (for example, a cluster whose nodes are located in different buildings). Fewer physical interfaces and less cabling is needed. When you create a VLAN interface, the CVI mode and MAC address are defined commonly for all virtual interfaces configured for the same Physical interface definition.

One network interface can support up to 4094 VLANs. The defined VLAN interfaces are displayed, for example, as “5.202” for network interface 5 with VLAN 202. The VLANs must also be defined in the configuration of the switch or router to which the interface is connected.
Note: If an IP address is already configured for a Firewall physical interface, adding a VLAN interface removes the IP address. If you plan to use VLAN interfaces, configure the VLAN interfaces first and then add IP addresses to the VLAN interfaces.

  For more details about the product and how to configure features, click Help or press F1.

Steps

  1. Right-click a Single Firewall or Firewall Cluster, then select Edit <element type>.
  2. In the navigation pane on the left, browse to Interfaces.
  3. Right-click a physical interface, then select New > VLAN Interface.
  4. Configure the settings, then click OK.

Result

The specified VLAN ID is added to the physical interface.

Next steps

Continue the configuration in one of the following ways:
  • Add ADSL interfaces, Wireless interfaces, Modem interfaces, Tunnel interfaces, or integrated switches.
  • Add IP addresses to the physical interfaces or VLAN Interfaces.

VLAN Interface Properties dialog box (Firewall)

Use this dialog box to define the VLAN Interface properties for a Single Firewall, Firewall Cluster, Virtual Firewall, or Master NGFW Engine in the Firewall role.

Note: The available options can vary depending on the type of Firewall, whether the interface is layer 2 or layer 3, and the type of layer 2 interface.
Option Definition
General tab
VLAN ID

Enter the VLAN ID (1–4094). The VLAN IDs you add must be the same as the VLAN IDs that are used in the switch at the other end of the VLAN trunk.

Each VLAN Interface is identified as Interface-ID.VLAN-ID, for example, 2.100 for Interface ID 2 and VLAN ID 100.

Second VLAN ID Enter the VLAN ID (1–4094) for the Second Interface in the Inline Interface pair. The VLAN IDs you add must be the same as the VLAN IDs that are used in the switch at the other end of the VLAN trunk. Each VLAN Interface is identified as Interface-ID.VLAN-ID, for example, 2.100 for Interface ID 2 and VLAN ID 100.
Note: The VLAN identifier must be identical in both Inline Interfaces. For example, 3.101 and 4.101 would be a valid pair of VLAN Inline Interfaces.
Zone

(Optional)

Select the network zone to which the interface belongs. Click Select to select an element, or click New to create an element.
MTU

(Optional, not supported on Virtual NGFW Engines)

The maximum transmission unit (MTU) size on the connected link. Either enter a value between 400–65535 or select a common MTU value from the list.

If the interface is a Physical Interface, the same MTU is automatically applied to any VLANs created under it.

The default value (also the maximum standard MTU in Ethernet) is 1500. Do not set a value larger than the standard MTU, unless you know that all devices along the communication path support it.

Note: To set the MTU for a Virtual NGFW Engine, you must configure the MTU for the interface on the Master NGFW Engine that hosts the Virtual NGFW Engine, then refresh the policy on the Master NGFW Engine and the Virtual NGFW Engine.
Comment

(Optional)

A comment for your own reference.
Reset Interface Select the Reset Interface to specify the interface through which TCP connection resets are sent when Reset responses are used in your IPS policy.
Logical Interface Select the Logical Interface.
Note: You cannot use the same Logical Interface element for both Inline and Capture Interfaces on the same NGFW Engine.
Option Definition
General tab, Virtual Resource section

(Master NGFW Engines only)

Virtual Resource The Virtual Resource associated with the interface. Select the same Virtual Resource in the properties of the Virtual Firewall element to add the Virtual NGFW Engine to the Master NGFW Engine.
Note: Do not select a Virtual Resource for a VLAN interface that is used for the Master NGFW Engine’s own communications.
Option Definition
General tab, Quality of Service and Bandwidth Management section
QoS Mode

(Optional)

Defines how QoS is applied to the link on this interface.

If Full QoS or DSCP Handling and Throttling is selected, a QoS policy must also be selected. If Full QoS is selected, the throughput must also be defined.

If the interface is a Physical Interface, the same QoS mode is automatically applied to any VLANs created under it.

QoS Policy

(DSCP Handling and Throttling and Full QoS modes only)

The QoS policy for the link on this interface.

If the interface is a Physical Interface, the same QoS policy is automatically selected for any VLANs created under it.

Note: If a Virtual Resource has a throughput limit defined, the interfaces on the Virtual NGFW Engine that use a QoS policy all use the same policy. The policy used in the first interface is used for all the interfaces.
Interface Throughput Limit

(Full QoS mode only)

Enter the throughput for the link on this interface as megabits per second.

If the interface is a Physical Interface, the same throughput is automatically applied to any VLANs created under it.

The throughput is for uplink speed (outgoing traffic) and typically must correspond to the speed of an Internet link (such as an ADSL line), or the combined speeds of several such links when connected to a single interface.

CAUTION:
Make sure that you set the interface speed correctly. When the bandwidth is set, the NGFW Engine always scales the total amount of traffic on this interface to the bandwidth you defined. This scaling happens even if there are no bandwidth limits or guarantees defined for any traffic.
CAUTION:
The throughput for a Physical Interface for a Virtual NGFW Engine must not be higher than the throughput for the Master NGFW Engine interface that hosts the Virtual NGFW Engine. Contact the administrator of the Master NGFW Engine before changing this setting.
Option Definition
DHCP tab
DHCP Mode Select the DHCP mode:
  • Disabled — DHCP relay is disabled.
  • DHCP Relay — Enables DHCP relay on the interface.
  • DHCP Server — Activates the integrated DHCP server on the interface.
Option Definition
DHCP tab, DHCP Relay settings

(If DHCP Mode is DHCP Relay)

Resources Select from the available DHCP servers.
Search Opens a search field for the selected element list.
Up Navigates up one level in the navigation hierarchy. Not available at the top level of the navigation hierarchy.
Tools
  • New — Creates an element of the specified type.
  • Show Deleted Elements — Shows elements that have been moved to the Trash.
Add Adds the DHCP server to the interface.
Remove Removes the DHCP server from the interface.
Max Packet Size Adjusts the maximum allowed packet size.
DHCP Relay Select the CVI or IP address you want to use for DHCP relay.
Option Definition
DHCP tab, DHCP Server settings

(If DHCP Mode is DHCP Server)

DHCP Address range Defines the DHCP address range that the Firewall assigns to clients in one of the following ways:
  • Select — Allows you to select an address range element.
  • Address — Allows you to enter a single IP address or an IP address range.
On Firewall Clusters, the DHCP address range is automatically divided between the nodes.
Note: The DHCP address range must be in the same network space defined for the Physical Interface. The DHCP address range must not contain the Firewall's NDI or CVI addresses or broadcast IP addresses of networks behind the Firewall.
Primary DNS Server Enter the primary DNS server IP address that clients use to resolve domain names.

If there is a listening IP address for DNS Relay on the same interface, clients use the DNS services provided by the firewall by default. If you want clients to use a different external DNS server, enter the IP address of the external DNS server.

Secondary DNS Server Enter the secondary DNS server IP address that clients use to resolve domain names.
Primary WINS Server Enter the primary WINS server IP address that clients use to resolve NetBIOS computer names.
Secondary WINS Server Enter the secondary WINS server IP address that clients use to resolve NetBIOS computer names.
Default Gateway Enter the IP address through which traffic from clients is routed.
Default Lease Time Enter the time after which IP addresses assigned to clients must be renewed.
Domain Name Search List

(Optional)

Enter a comma-separated Domain Name Search List to configure DNS search suffixes.
Override DHCP Ranges per Node

(Firewall Clusters only)

Enter the DHCP address range for each node.
CAUTION:
Enter unique ranges for each node. Overlapping ranges can cause IP address duplication.
Option Definition
Advanced tab

(All optional settings)

Override Engine's Default Settings When selected, the default settings of the engine are overridden.
SYN Rate Limits
  • Default — The interface uses the SYN rate limits defined for the engine on the Advanced Settings branch of the Engine Editor.
  • None — Disables SYN rate limits on the interface.
  • Automatic — This is the recommended mode if you want to override the general SYN rate limits defined for the engine on the Advanced Settings branch of the Engine Editor. The engine calculates the number of allowed SYN packets per second and the burst size (the number of allowed SYNs before the engine starts limiting the SYN rate) based on the engine’s capacity and memory size.
  • Custom — Enter the values for Allowed SYNs per Second and Burst Size.
Allowed SYNs per Second Defines the number of allowed SYN packets per second.
Burst Size The number of allowed SYNs before the engine starts limiting the SYN rate.
Tip:

We recommend that you set the burst size to be at least one tenth of the Allowed SYNs per Second value. If the burst size is too small, SYN rate limits do not work.

For example, if the value for Allowed SYNs per Second is 10000, set the value for Burst Size to at least 1000.

Enable Log Compression

Allows you to define the maximum number of separately logged entries.

For each event type, Antispoofing or Discard, you can define:
  • Log Rate (Entries/s) — The maximum number of entries per second. The default value for antispoofing entries is 100 entries/s. By default, Discard log entries are not compressed.
  • Burst Size (Entries) — The maximum number of matching entries in a single burst. The default value for antispoofing entries is 1000 entries. By default, Discard log entries are not compressed.
Set to Default Returns all changes to the log compression settings to the default settings.
Send IPv6 Router Advertisements Select and specify what configuration information is offered in the Router Advertisement messages to devices that connect to the same network as the firewall.
Managed address configuration When selected, the router advertisement messages that the Firewall sends instruct the hosts to use the DHCPv6 protocol to acquire IP addresses and other configuration information.
Other configuration When selected, the router advertisement messages that the Firewall sends instruct the hosts to acquire the IPv6 prefix and the default route information from the router advertisement messages, and to use the DHCPv6 protocol to acquire other configuration information (such as DNS server addresses).